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Abstract. The capacity for storing random patterns in a diluted neural network is determined 
following the method of Gardner. The non-zero coupling coefficients are restricted to take 
on the Ising values * I .  Different degrees of dilution are considered. The maximum value 
a, = 1.17 for the storage capacity is obtained when each neuron is connected to 63% of 
the other neurons. 

1. Introduction 

The study of the storage capacity of a neural network has progressed strongly in recent 
years, due mainly to the pioneering work of Gardner [l]. Adapting some methods 
from the theory of spin glasses, she succeeded in determining the storage capacity of 
a neural network when the coupling coefficients Jij are allowed to take on unrestricted 
values except for an overall normalisation condition (spherical model). Using N to 
denote the number of neurons and p the number of memorised patterns and using a 
for the storage ratio p /  N, the storage capacity a ,  is defined as the maximum value of 
a, i.e. the maximum number of patterns which can be stored per neuron. For the 
spherical model Gardner obtained a ,  = 2 ,  in agreement with earlier derivations by 
Cover [2] and Venkatesh [3]. The method was extended and reformulated in the 
language of statistical mechanics by Gardner and Derrida [4] and also applied to the 
case where the coupling coefficients are restricted to take on the values +1 only (Ising 
couplings). For this case, they obtained a,  = 4/ 7~ but immediately remarked that this 
value is too large for the exact storage capacity. Gardner and Derrida found that this 
failure is caused by the lack of stability of the replica-symmetric saddle point in the 
case of Ising couplings. 

In a recent paper, Krauth and Mizard [5] have reinvestigated the problem of 
storage capacity of a network with Ising couplings. Using a first step of replica- 
symmetry breaking, they obtained a ,  = 0.83 for the storage capacity, in good agreement 
with numerical calculations. More interesting, they obtained the same value from the 
replica-symmetric calculation by requiring that the quenched entropy must be non- 
negative. This condition should clearly be satisfied because the space of interactions 
contains a countable number of coupling vectors in the case of Ising couplings. 

In this paper, we extend the calculation of Krauth and Mizard to the case of a 
diluted network with Ising couplings. Each neuron is coupled to the same fraction f 
of the other neurons. Unlike most calculations for diluted networks where the choice 
of couplings which are cut is random [ 6 ] ,  we consider the problem of how to maximise 
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the total number of stored patterns under the constraint that each neuron be coupled 
to just fru other neurons. In this approach, the choice of disconnected couplings is 
selective and strongly correlated to the stored patterns. A similar approach has been 
followed for the Hopfield model by Sompolinsky [7] and by Van Hemmen [8]. For 
f =  1, we recover the calculation of Krauth and MCzard. We are interested in studying 
how the storage capacity a , ( f )  depends on the degree of dilution. In section 2, we 
calculate the quenched entropy using the replica-symmetric ansatz. In  section 3, we 
obtain an upper bound for a , ( f )  from the annealed entropy. In section 4, we study 
the solution of the stationary point equation and determine a , ( f )  from the non- 
negativity of the quenched entropy. The results are discussed in the last section. 

2. Calculation of the quenched entropy 

We will assume that the reader is familiar with the papers of Gardner [ l ]  and of 
Krauth and MCzard [ 5 ] .  In this section, we will closely follow the reasoning of Gardner 
but will use the simpler notation of Krauth and MCzard. 

We consider a network of N + 1 neurons which are labelled by the index i = 
0, 1, . . . N. Each neuron i is coupled to the other N neurons with coupling coefficients 
Jlj which can take on the values i l  or 0. We focus our attention on the neuron i = 0 
and use the notation J, = Jo,. The N coupling coefficients J ,  can be considered as the 
components of an N-dimensional coupling vector J in Gardner's phase space of 
interactions. We fix the number of zero couplings and call it Z. This yields the following 
normalisation condition for the coupling coefficients: 

N 
J ; = J . J = N - z = ~ N  

J = 1  

where f is the fraction of non-zero couplings. The coupling coefficients J ,  must now 
be chosen in such a way that the p random patterns { [ j ' }  are memorised. This yields 
the usual p conditions [ 5 ]  

where 7: = tg.$' and K is a stability parameter ( K  2 0). Our problem is to determine, 
for any given value o f f €  [0,1], the maximum number of random patterns for which 
a solution for 4 exists which satisfies all conditions (1) and (2). 

Following the original ideas of Gardner [ 11, we calculate the quantity 

1 
S - lim -(logR) 

Q -  N (3) 

which will be called the quenched entropy S,. The brackets ( ) represent the average 
over the p random patterns (57) and R is the number of coupling vectors J which 
satisfy the p + 1 conditions (1) and (2). This number is given by the expression 

Each coupling coefficient 4 in the sum takes on the values *l  and 0 independently, 
the Kronecker delta taking care of condition (1). 
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From its definition, the value of R is a non-negative integer. For given N, when 
the number p of patterns increases, the number of conditions (2)  increases so that the 
value of R must decrease. As long as all conditions ( l ) ,  (2) can be satisfied, R will 
be larger than or equal to 1 and SQ is positive. The critical storage capacity CY, is 
reached when SQ becomes equal to zero. 

The calculation of S ,  is done using the replica method [l]. The 8 functions are 
represented by their Fourier integral and the Kronecker delta is similarly expressed 
as a sum of exponentials by using 

1 r r  
aKr( k, m) = J exp[i( k - m)$] d$. ( 5 )  277- --?i 

Using the straightforward techniques of Gardner [ 13, we obtain 

When N, Z and p tend to infinity while keeping the ratios f = ( N  - Z ) /  N and CY = p /  N 
fixed, we can use steepest-descent methods to evaluate the integral ( 7 ) .  This yields a 
set of equations for the stationary points of Gn($a, Fab, qab). In order to solve these 
equations, we look for a replica-symmetric solution where 

$a = II, F o b  = F qab = (10) 
independent of the index a or b. Under this symmetry assumption it becomes easy to 
calculate the functions G,(q)  and G2($, F) exactly. On the other hand, in order to 
obtain the entropy from (6) we must consider the limit n + 0. In this limit, the three 
stationary-point equations become 

exp[-(++tq')]2 c o s h ( 4  z) 

1 +exp[-(r$ +iq')]2 c o s h ( 4  z) 
f=[= Dz 

-" 
exp[ -( 4 + f q ' ) ] 2  s i n h ( 4  z) 

1 + exp[ -( 4 +&)I2 c o s h ( 4  z) 

where we have put (I/ = i+ and F = iq' in order to obtain real-valued parameters. The 
other notation is like in [ l ]  

exp(-z2/2) 
JT;; dz H ( x )  = jx" Dz. Dz = 
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For given values of Q andf,  the stationary-point equations (1 l ) ,  (12) and (13) determine 
the value of 4, q and q‘. The quenched entropy is then obtained as 

Lx +I Dz l o g { l + e x p [ - ( ~ + f q ‘ ) ] 2 c o s h ~ z } .  
--at 

3. Upper bound for cu,(f) from the annealed entropy 

Before taking up the study of the solution of the three stationary point equations, we 
first derive an exact upper bound for the maximum storage capacity a , ( f ) .  This is 
easily obtained from the annealed entropy 

1 
SA( a, f) = lim - log(0). 

~ + s  N 

From the concavity of the logarithm 

(log 0) log(0) 

we get immediately 

S Q ( a , f ) <  S A ( a , f ) .  (18) 
As we know that S ,  must be positive when a < a,  we obtain from (18) that also SA 
must be positive for a < a,. 

The annealed entropy can easily be calculated exactly. In the limit N + 00 we get 

S*( (Y , f )=a  log H ( K ) + f l o g 2 - f l o g f - ( l  -f)log(l-f) .  (19) 
For each fixed value o f f ,  the entropy SA is a decreasing function of a because the 
value of H ( K )  is always smaller than 1. S A ( a , f )  becomes zero when a is equal to 

It follows immediately that aA(f) is an exact upper bound for the storage capacity. 
The function aA( f )  is shown in figure 1 (broken curve) for the case K = O .  It attains 
its maximum value log 3/log 2 = 1.58 for f=+. 

An upper bound for a , ( f )  can also be obtained from information theory. Since 
each neuron can be connected to the other N neurons by (&)2Nf different coupling 
vectors J which contain N (  1 -f) zeros, it is possible to store 10g((&)2~’)/1og 2 bits 
of information per neuron. This number is therefore an upper bound for the maximum 
number p of patterns which can be stored. This upper bound coincides with a A ( f )  
in (20) when we put K = O .  

4. The critical storage capacity derived from the quenched entropy 

We now turn to the solution of the stationary point equations (1 l ) ,  (12) and (13). For 
given values of a and f, we must find the solution for q, q’ and 4. This can, in general, 
only be done numerically. Only in special limiting cases is it possible to obtain solutions 
by analytic methods. 



Storage capacity of a diluted neural network 2609 

‘ IC 

1.75 1 I 
1.50 

1.25 

1.00 

0.75 

0. 50 

0.25 

0 0.2 0.4 0.6 0.8 1 .o 

Figure 1. The storage capacity a , ( f )  is 
given as a function of the fraction f of 
non-zero couplings (solid curve). The 
broken curve gives the upper bound a,,(f) 

f as derived from the annealed entropy. 

From equation (12) it follows that q must be positive and from equation (13 )  it 
follows that q must be smaller than 1. So q must lie in the interval (0, 1). At the lower 
limit q =0,  we get q ’ = O  from (12) and a = O  from (13). Since our goal is the 
determination of the maximum value of a, the neighbourhood of q = 0 is uninteresting. 
Near the upper limit q -* 1, we can use asymptotic approximations which make the 
solution of the three equations much easier. This yields the largest value of a for 
which the three equations have a solution. But this solution again is uninteresting 
because it lies everywhere above the upper bound which we derived in the previous 
section. Like Gardner and Derrida [2], we have checked the condition of local stability 
for q -* 1 and have found that the replica-symmetric saddle point fails to satisfy this 
condition for all values off :  

Following Krauth and MCzard, we now determine the maximum storage capacity 
for each value off from the condition that the quenched entropy must be non-negative. 
We use the replica-symmetric expression (15 )  for the entropy and determine a , ( f )  by 
solving the equation 

sQ( a c  I f ) = 0. (21) 
The solution of the four equations (1 l ) ,  (12), (13) and (21) for a given value of f  

can only be done numerically. For the case K = 0, the resulting storage capacity a , ( f )  
is shown in figure 1 (solid curve). It lies everywhere below the upper bound aA( f )  
as it should do if the inequality (18) is satisfied. The function a c ( f )  has the same 
general form as a A ( f )  and attains its maximum value 1.17 near f =  0.63. 

The calculated value of a , ( f )  will be the exact storage capacity if the replica- 
symmetric expression (15) for S Q ( a , f )  is exact. A necessary condition is that the 
replica-symmetric saddle point be locally stable at a , ( f ) .  We have checked this 
condition and found it to be satisfied for all values off:  A more positive argument 
which suggests that the result for a , ( f )  is probably correct comes from the generalisa- 
tion of an elegant argument of Krauth and MCzard [3] in their calculation for the 
king case. This argument makes use of a result of Gardner’s paper [l]. Considering 
the sphere of radius in the space of interactions, Gardner determined the typical 
value of the fraction of the surface of the sphere where the p conditions (2) are satisfied. 
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The value of this fraction is equal to eNGtq)  where the function G(q) is given by 
Gardner’s equation (20). The order parameter q depends on a via her saddle-point 
equation (Gardner’s equation (23)). In the case of Ising couplings, there only exist 
2N coupling vectors and their endpoints lie distributed homogeneously on the surface 
of Gardner’s sphere. Krauth and MCzard argue that it is reasonable to assume that 
a ,  should be obtained when the fraction of the surface has become so small that on 
the average only one endpoint of the 2N vectors lies in it. This determines a,  from 
the equation 

or 

G (  q(  a,)) = -log 2. 

Solving this equation, Krauth and MCzard find a,  = 0.85, just a little above the value 
0.83 which they obtained from the quenched entropy. It is easy to generalise their 
reasoning for diluted Ising couplings at least in the case K = 0. In this case the special 
value a of the radius of Gardner’s sphere is irrelevant. For a general value o f f ,  
there are (&)2” coupling vectors with N ( l  -f) zeros. The equation (23) is then 
replaced by 

G ( q ( 4 )  = -f log 2 +f logy+ ( 1 -f)log( 1 -f ). (24) 

Solving this equation together with Gardner’s saddle-point equation yields a value for 
a , ( f )  which runs parallel to and just above the storage capacity derived from the 
quenched entropy. The difference is so small that, if drawn in figure 1, it would hardly 
be distinguistable from the curve a , ( f ) .  

5. Discussion 

In this paper, we have generalised the calculation of the storage capacity by Krauth 
and MCzard to the case of diluted Ising couplings. Using the replica method with 
replica symmetry to calculate the quenched entropy, we have determined the storage 
capacity a , ( f )  from the condition that the entropy must be non-negative. The result 
shows a 40% increase in storage capacity when one third of the couplings are cut in 
the fully connected Ising network. Although this may look attractive for practical 
applications, it is difficult to implement presently due to the lack of a good algorithm 
for determining the coupling coefficients. 

There exist several reasons for believing that the result of the replica-symmetric 
calculation may be correct. It agrees closely with the value obtained from the attractive 
argument used by Krauth and MCzard and based on a formula of Gardner which is 
known to be correct. It also agrees qualitatively with exact numerical calculations by 
Vanderzande [9] for small systems of up to fifteen neurons for values of f  = f, f and 
1. Finally for all values o f f  the replica-symmetric saddle point is locally stable at 
a , ( f ) .  As a matter of fact we have checked that the stability condition of the saddle 
point is satisfied for even larger values of a, at least as large as aA( f ) .  

It is interesting to compare our results with those of Sompolinsky [7] and Van 
Hemmen [8] for a network with three-level synapses. Starting from the Hopfield model, 
all couplings are severed which are weaker than a chosen cut-off value x,, while all 
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remaining couplings are replaced by the Ising values *l depending on their sign. The 
value of the parameter xo determines the overall degree of dilution. The fraction of 
non-zero bonds is equal to co = 1 - Erf ( x O / a ) .  From the procedure of cutting the 
couplings, it is clear that the position of the missing bonds is not random but correlated 
with the stored patterns. The calculated storage capacity a,  as a function of the 
connectivity parameter co (the same as our f )  displays the same general behaviour 
(Sompolinsky's figure 4.4) as our function a , ( f ) .  The storage capacity goes through 
a maximum for a value o f f  smaller than 1. Sompolinsky and Van Hemmen obtain 
the maximum storage when xo = 0.62 which corresponds to co = 0.53 (in Sompolinsky's 
paper, the value co = 0.63 is quoted, but this seems to be a printing error). The maximum 
in our calculation occurs fo r f=  0.63 but as both curves are very flat near their maxima, 
they look quite similar. 

From the calculated storage capacity a , ( f )  we can easily determine the derivative 
a : ( f ) .  The physical meaning of this quantity is obvious: for any value o f f  it gives 
the possible increase in storage capacity due to a small increase in connectivity. More 
intuitively, this derivative is a measure for the efficiency of the added connections for 
storing additional patterns. From figure 1 it is seen that a L ( f )  is a monotonously 
decreasing function off:  For very small values off;  the derivative a ; ( f )  has the same 
meaning as the ratio a c ( f ) / f  which is the storage capacity per synapse. This latter 
quantity has been considered in neural networks with strong random dilution [6] 
because it tends to a finite value when f tends to zero. In our calculation in which 
the position of the missing bonds is optimised, the value of a ; ( f )  diverges logarithmi- 
cally when f tends to zero: 

In a very diluted network, the couplings between the neurons are extremely efficient 
in storing many patterns. As an example, for f= lo-*, the right-hand side of (25) is 
of order 26, indicating that one extra coupling per neuron could store 26 extra patterns. 
When the value off increases, aL( f )  decreases rapidly and becomes very small when 
each neuron is connected to half of the other neurons. A further increase in connectivity 
does not increase the storage capacity. Beyond f = 0.63 the efficiency even becomes 
negative, corresponding to a decrease of the global storage capacity. 
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